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Executive summary 

Aim and method 

The study specifies potential bottlenecks in the supply of material resources due to effective 

climate policy in the longer term towards 2050, but indicates longer duration developments 

as well. A second part of the analysis is about how such bottlenecks may strategically be 

overcome. The focus is on the metallic elements. Demand for climate related technologies is 

additional to rising demand due to economic growth in general and the build-up of 

infrastructure in developing countries specifically. Growth is not neutral as to shares of 

different metals, but increasingly shifts to smaller amounts of much larger numbers of 

metals, as related to ICT developments. This tendency is also present in climate and energy 

technologies. The question which metals will be required, and in which quantities, depends 

on the technologies being used, their metals-specific composition and the volumes involved. 

Neither of these variables can be specified with any certainty. Most electric cars use 

neodymium permanent magnets but Tesla uses variable field copper electromagnets. Similar 

holds for wind power. Which of these will be the dominant magnet metals in 2050 is 

substantially open. 

However, there are substantial similarities between groups of technologies in their metals 

demand to make scenarios based on specific technology assumptions relevant, as 

representative for the broader but mostly unknown domain of future technologies. So we 

used one of the most technology specific scenarios for 2050 now available, see Koning et al 

2014. It is a detailed input-output specification of the economy in 2050. The metals 

requirements to be met can be specified as flows per year. In the build-up stage of stocks of 

metals in products and installations, recycling does not yet play a role. So it is not just flows 

per year but also the stock requirements for having the installations functioning which play a 

role in assessing bottlenecks in metals demand for the coming decades. Of course such 

bottlenecks are additive to the ones coming up due to general economic development. All 

metals demand is global, with production, spatially concentrated or not, for such global 

markets. 

The match between supply and demand is not a mechanical one, or simply linking economic 

supply and demand curves. It is long term market expectations which determine production 

development and expected production constraints which influence demand development 

and hence expected demand. In these somewhat soft surroundings strategies are to be 

developed to avoid bottlenecks, especially where  price peaks do not lead to relevant supply 

increases as for example due to long gestation periods in opening up new mines. Such 

strategies partly are public policy oriented, but partly also based on well-founded analysis, 

such knowledge directing technologies and markets in directions with low supply risks.  
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Quantification of climate policy related resource demand 

The quantification of resource demand focuses on a number of key sectors: electricity 

production; energy transformation and transport systems; road transport; and Carbon 

Capture and Storage (CCS).  

Potential bottlenecks 

Potential bottlenecks will be there where growth rates starting from current production 

levels towards “2050” production are to be high, in the order of more than 2 or 3%. When 

current production is still negligible, as is the case with several rare earths, this growth rate is 

however not meaningful. Also metals coproduced with a major bulk metal can pose different 

kind of bottlenecks: expanding production of the main product, like copper, iron or zinc, is 

hardly possible economically for trace metals in the order of less than a percent of the major 

metal. Also metals where opening up new mines takes up to decades, like for copper, cannot 

substantially respond to market signals in economically relevant time periods. 

Global demand and supply for metals resources 

Global demand will rise generally due to economic growth and specifically for new 

technologies as in IT related developments. The build-up stage of infrastructure in developing 

countries will require substantial amounts of metals and other minerals in the coming half 

century, with recycling playing hardly a role.  Effective climate policy will require additional 

resources, both related to bulk materials, like iron and copper; intermediate materials like 

lithium; alloying materials like nickel and chromium; and specialty materials available in small 

quantities, like rare earth elements, and really rare elements like indium, and tellurium. 

Demand development, including demand related to effective climate policy, must reckon 

with overall supply limitations: there is more iron available for mining than gold in this world; 

no technology can change that.  

Insight in these constraints is a most basic strategic issue, where governments can contribute 

through research funding. 

Demand for climate technologies detailed 

Demand for climate policy related development depends on the technologies that will be 

implemented. A distinction can be made as to major technologies for emission reduction 

being used. An emphasis on CCS related developments will require substantial transport 

infrastructure for CO2, with demand for iron and alloying metals like nickel, and chromium 

increasing substantially. 

A more renewables oriented developments would require a broad set of elements from the 

periodic system. Specifics depend on the choice from a set of known technologies in wind 
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and solar power and on as yet unknown technologies, specifically for PV which in the long 

term is likely to provide the bulk of renewable energy.  

Both systems would require substantial electrification, including that of most transport, as 

decentralized use of carbon containing fuels will have to be reduced to near zero. However, 

the intermittent nature of most renewables will also lead to substantial energy buffering and 

storage requirements. Current developments cannot yet indicate winning technologies in this 

arena, so precise demand predictions are hardly possible. However, low carbon energy 

certainly will substantially increase materials demand per MJ, for a broad range of metal 

resources. 

Detailed technology scenarios, more and more detailed than now are used in this analysis, 

would help create insight in demand requirements for effective climate policy. 

 

Market related supply constraints for climate technologies 

Market related supply constraints first relate to the unavoidable limitations in geological 

resource availability. Within these boundaries, supply constraints depend on the cost of 

extraction and processing, to be matched by price. Depletion of the most rich and easily 

approachable ores will increase costs while technology improvement reduces costs. The net 

effect will differ per resource and groups of combined resources, like rare earths.  A 

complicating factor is that many elements are produced as minor co-products. When such co-

production is not fully exploited yet this will make upscaling production easy, involving the 

processing stage only. Once this option is fully exploited upscaling of production will be 

extremely expensive.  Predictions are hard to make in specific cases. There has been an often 

exponentially rising trend in almost all metals produced, without a clear direction in price 

development in the last century. That is the situation to reckon with: substantial uncertainty 

and no clear tendency in price. 

However, climate policy adds a new uncertainty. How sure can miners be that climate policy 

indeed will be successful? An extreme but important example can clarify the importance of 

this uncertainty. Relevant miners assume policy success and start opening up copper mines 

to deliver the required amounts.  Demand will rise in the next decades. The new copper 

mines invested in will come to full production after in the order of up to 25 years.  The match 

is perfect. If however climate policy is delayed, the demand expansion will not occur and 

copper prices will collapse. Most copper miners will then write red figures till the most costly 

mines and least financially viable companies will have closed down.  

The high uncertainty on climate policy makes any investment for that future supply a high 

risk investment, with a substantial chance on loss. This implies that if successful climate 

policy would come about, there nearly certain will be a shortage of copper supply, with prices 

then spiralling. For metals where production can be expanded more easily and fast, like 

lithium, this is much less the case. 
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The most basic issue in having the supply needed in successful climate policy is to reduce 

demand uncertainty: make effective climate policy really credible. 

 

Recycling and substitution 

Long term demand for virgin resources is not absolute per resource. Improved recycling 

reduces primary demand. This factor can become important only after the build-up stage has 

been substantially completed. For much fixed and mobile infrastructure, including ships, 

trains and airplanes, this build-up stage can take half a century and or more. 

Substitution is a major route to avoid specific depletion. The supply problems with 

neodymium (due to political constraints) for ultra-strong magnets can be avoided by using 

electromagnets instead. This choice has been made by Tesla, but not by other car builders, 

accepting a slightly lower efficiency of the electromotor’ s/dynamo’s, but avoiding supply 

risks.  It seems that such considerations, not to rely on resources with possibly restricted 

supply, is being broader adopted now in technology development. However, in deeper 

innovations as for example in near-zero resistance electricity transport, public research 

seems required, then avoiding reliance on possibly too expensive copper. 

Setting up relevant recycling systems, including product requirements like demountability, 

are essential now already for shorter life time applications, but in the long run for all 

products and installations. 

Political and monopolistic supply constraints 

Monopolistic behaviour is possible with one producer dominating the global market. It also  is 

possible through state action, where one country has an overarching position in supply, as in 

the case of export restrictions of rare earth elements by China, especially neodymium. There 

are two mutually exclusive routes to keep such actions at bay. One is to make long term 

bilateral arrangements with the producer or producer country. If all user countries do so, an 

inflexible system results, with extreme price volatility for the tiny open market left. With 

prices in the open market rising to a manifold of the contract prices, contractual supplies just 

will not be met, seems a safe prediction from past experience. 

The other option is to prevent private monopolies and bring the supply of resources more 

forcefully in the open market domain, as organized in the WTO.  This will not function fully 

and not always. Especially smaller countries don’t have other options than this one. 

Defeating short term actions by near monopolist countries could be countered by building up 

strategic reserves by consumer countries of the metals involved. The cost of setting up, which 

will drive up prices, and of maintaining such reserves are substantial. If that action is 

successful and monopolistic behaviour does not occur, the full costs of having the reserve are 

for the organizing party as a full loss, with additional profits for the producer country. 

Bringing the reserves on the market will depress prices. The experience with the UNCTAD  

resource funds have not been positive. The strategic stock building in the US in 1950s has  led 

to the collapse of domestic mining as domestic markets were taken over by foreign 
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producers. Private speculation with silver by the Hunt brothers has proven that costs of 

maintaining reserves can be very high: they lost their fortunes. 

Monopolistic misbehaviour is to be reduced by antitrust policies, and where countries are 

involved by clarifying WTO rules and developing most direct sanctions. For all metals with 

monopolistic risks research for substitution is to be publicly supported. 

Key conclusions 

o Uncertainty on supply and demand of metals has always been substantial and will 

remain so. 

o Successful climate policy would require substantial additional supply, which could be 

part of the usual investment considerations on metals and mining firms. 

o The high uncertainty on having successful climate policy will lead to substantial 

though temporary shortages.  

o Substitution can to some extent avoid reliance on metals with supply uncertainty. 

o Shortages, as severe price peaks with limited supply reaction, will be most severe for 

metals: 

o where increasing the mining and processing capacity takes a long time, 

with copper as a prime example (>20 years) 

o with a low concentration metals co-produced with bulk metals like some 

rare earths, and indium and tellurium in some iron, zinc and copper ores  

o where near monopolistic supply makes disturbance possible.  

o Monopolistic behaviour can best be approached through antitrust policy where firms 

are involved. Where governments can play that role strengthening of WTO rules 

seems the only direct policy option, combined with research to create substitution for 

the metals or products containing that metal.  

o When capacity can be increased with short lead times and without substantial price 

rises, such shortages will hardly play a role, as for lithium.  

o Avoiding the reliance on metals with potential shortages seems a key strategy for 

avoiding bottlenecks in the development of climate technologies.  
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1 Introduction 

Key elements of an effective climate policy require that by 2050 the energy production and 

consumption systems are substantially changed relative to the current energy production and 

consumption systems. These possible future low carbon energy systems require different 

amounts and different types of materials than the current existing energy production and 

consumption systems. For instance the amount of materials associated with the production 

of electricity with a wind turbine is much larger than the production of the same amount of 

electricity with a conventional coal power plant. The sheer size of the energy production and 

consumption system means that a change of this system might be limited by the supply of 

the materials needed for the low carbon energy systems. To be able to limit average global 

warming to about 2 °C above pre-industrial levels, a 80% reduction of GHGs may be required 

(IPCC, 2014) by 2050, a figure adopted by the European Union in established policies. Thus 

the change in energy systems must not only be substantial, it is also to be accomplished in 

about 35 years’ time. The speed by which new resources are discovered and new mines can 

come into operation might therefore be a bottleneck for the energy transition as well. Well-

founded expectations on the certainty of future demand for metals are important for 

investments in new mines to take place. 

In this report it is investigated if resource constraints can be a bottleneck for formulating 

successful climate policies. If there are bottlenecks, policy measures that might alleviate 

future resource problems are investigated. Resources that will be investigated are metallic 

resources like bulk metals such as iron and aluminium. Of specific interest are rare earth 

metals (Kleijn et al., 2011) that play a large role in many high efficiency low carbon energy 

technologies such as batteries and electromagnets. An overview of these rare earth metals 

and their applications in energy technologies can be found in (Eliseeva & Bu, 2011). A 

successful climate policy is assumed to be a policy in which there is a high change that 

average global warming is limited to 2 °C above pre-industrial levels, requiring emission 

reductions up to 80% by 2050. 

Not investigated are bottlenecks of minerals resources such as sand, clay, stone. Sand, clay 

and stone are ubiquitous available and are locally mined and used mostly. There might be 

local resource constraints (e.g. when building a dam) but it seems unlikely that the supply will 

become a global problem. Another resource problem not investigated is the supply of 

fertilizer minerals (phosphate minerals) and biomass for energy production. These two issues 

are of utmost importance because many of the 2 °C GHG emission scenarios rely more or less 

on the use of biomass for energy production, potentially competing for land that is also used 

for food, feed and fibre production (Tilman et al, 2009), and for nature. However the biomass 

supply constraints need to be studied with a different analytical framework and requires 

separate study. 
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Answering the main question of this study is difficult to say the least. The following issues are 

at play: 

o How a successful climate policy scenario looks like in 2050 is not known. Different 

scenarios, with different sets of energy technologies can be envisaged. 

o It is uncertain how energy technologies will develop the coming 35 years’ time and 

what their metal requirements will be. 

o It is unknown if new metal substitution possibilities will become available the coming 

35 years. 

o While absolute supply of metals can be inferred from concentrations in the earth 

mantle the supply that matters is the metal that can and will be mined economically. 

The actual supply of metals is highly dependent on the prices that can be paid, the 

investments that are made to open up mines, and political constraints. 

Given the above it is likely that there will be order of magnitude uncertainties when it comes 

to establish demand as well as supply of metals in scenarios of successful climate policies. 

Nonetheless it might be possible to examine if there are possible metal resource constraints 

that need to be taken into account when formulating successful climate policy by examining 

boundary cases. 

To make an assessment of the possible metal resource bottlenecks the following research 

questions will be addressed: 

o What might be an educated guess for the demand for metals in the year 2050. 

Preferably the guess should err on the high side. 

o What would be a ballpark figure for the total demand for metals to build up the new 

energy production and consumption system from 2000 until 2050, i.e. the cumulative 

amount of metals needed until 2050 in case of successful climate policy is 

implemented. Again the guess should err on the high side. 

o What is the current rate of metal extraction and how does it compare the current 

actual demand and expected demand for metals in 2050. 

o What are the current economic reserves and how does it compare to the expected 

total metal demand until 2050. 

o In how far can substitution between materials and recycling solve possible conflicts 

between supply and demand taken a 35 years’ time technological progress. 

o Are there bottlenecks in the speed by which the mines can be scaled up both from a 

technical as well as business/investment point of view. 

o Are there specific political supply risks where the supply of a single metal is controlled 

by a single country or single firm, a key issue in criticality (EC, 2014). 



 

Resource constraints in successful climate policy  |  Page 12 

The report starts with a description of the methodological framework used to make an 

educated guess of the metal demand until 2050. Then the results of this analysis are 

confronted with the values on available metal resources and metal supply rate. These results 

are discussed in the light of other important factors that might influence the long term supply 

and demand of metals. 
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2 Materials and Methods 

2.1 Analytical framework 

The research framework is as follows. First two ball park figures for the demand for metals in 

2050 are estimated on the basis of two scenarios. One scenario is a business as usual (BAU) 

scenario until 2050. This BAU scenario is a scenario in which historical developments, 

including efficiency improvements, are extrapolated until 2050. This scenario has been 

described in De Koning et al. (2014, 2015). GHG emissions in the BAU scenario are on a 

trajectory towards an 8 °C global warming, similar to the RCP8.5 BAU scenario (De Koning et 

al., 2015; IPCC 2014). The second scenario is a Techno Scenario (TS) in which all probable and 

possible technical CO2 emission reduction measures currently envisaged have been 

implemented in 2050. It is a techno-optimistic scenario that for instance includes CCS on all 

the remaining fossil fuel power plants, widespread introduction of electrical vehicles and 

complete electrification of household heating. It is important to note that this TS does not yet 

correspond to a scenario where the average global warming is limited to 2 °C. Instead the TS 

brings us on a trajectory of about 4 °C average global warming similar to the RCP4.5 scenarios 

(IPCC, 2014). GDP growth in the BAU scenario and TS follows projections made by the OECD 

(2012). The TS is not an example of successful climate policy as we defined successful climate 

policy which realises a 2 °C temperature rise at the maximum. According to our analysis, only 

our techno-optimistic scenario in combination with a rate of economic growth slower than 

those predicted by the OECD (2012) can keep global emissions within a 2 °C limit. Instead of 

an yearly average global GDP growth of 2.3%, the growth rate would need about 1% per year. 

A truly successful climate policy would therefore entail a TS with a reduced growth rate, 

lowering the demand for products and energy and hence associated metal resources 

compared to the TS. The estimate of the metal resources needed in the TS are therefore a 

high mark for the demand of metals. Another option would be to believe in as yet unknown 

technologies saving us. Fundamental innovations can however hardly be available in full 

quantity within 35 years.  

 

The yearly demand for metals required in the BAU and TS in 2050 is estimated using data 

about metal requirements of different energy sources, coupled to scenarios of the energy 

market and together with expected growth scenarios of other sectors such that an overall 

expected demand of the most relevant metals is obtained.  How the metal requirements of 

different electricity generation technologies, road vehicles, buildings and other infrastructure 

are taken into account is discussed in Section 2.2 - 2.5.  

The high mark yearly metal demand results of the TS 2050 are subsequently compared with 

the current yearly metal demand and supply.  These TS 2050 results can next be used to 
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make get a high mark ball park figure for the total amount of metals to be extracted until 

2050 which can be compared to available reserves. 

 

 

2.2 Electricity generation technologies 

In this section the metal requirements of photovoltaics, wind, hydropower, fossil fuel and 

concentrated solar electricity generation technologies are described. The cradle-to-grave 

metal requirements of these technologies are taken from a wide range of literature sources 

and LCA databases. It should be noted that these are the metal requirements of the 

technologies as they currently exit. By 2050 the metal requirements of the technologies have 

likely decreased in general due to ongoing technological progress. For specific metals and 

specific applications material use might increase. 

2.2.1 Photovoltaics 

Moss et al. (2011) was used as a basis for the metal requirements of PV panels. Moss et al. 

give an extensive overview for the metal requirement of several energy sources and also give 

an inventory of different forms of PV panels and which are currently under development. 

Common metals with low scarcity like aluminium and iron are not accounted for in in the 

research of Moss et al. (2011). These data were taken from Laleman et al. (2013). 

To convert the data from Moss et al. (2011) to the metal requirements per MWh, the data 

was corrected for the lifetime of the PV panels (25 years), yearly energy production and the 

capacity factor (20%) both based on (EIA, 2014). 

The requirements of aluminium and iron for PV were obtained from Laleman et al. (2013). 

This source was chosen because it focuses on metals required for installing the modules and 

different types of PV modules are included. The data is presented as the amount of iron and 

aluminium per m2 of module. To determine the metal requirements per MWh the yearly 

energy production was calculated using the data given in the article. For the yearly irradiation 

1300 kWh/m2/year was used, because this is an average of the irradiation at different 

locations, however it is very well possible that PV panels will be mainly used in areas with 

higher or lower irradiation levels. Additionally a lifetime of 25 years was assumed (EIA, 2014) 

and data from the Ecoinvent LCA database was used if multiple data sources were presented. 

Finally the metal requirements were adjusted for the assumed technology mix of different 

types of PV panels in Moss et al. (2011). 

 

2.2.2 Wind 

For the metal requirements of wind energy Moss et al. (2011) was also used. The data was 

converted to the requirements per MWh in the same way as described for PV. A lifetime of 

25 years was assumed (Wilburn, 2011) and a capacity factor of 30% (EIA, 2014). The 
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requirement of iron and aluminium was obtained from Wilburn (2011). This research also 

focuses on the future developments of wind turbine technology and the effect on the 

average metal requirement, in contrast to a single type of turbine. The same method and 

assumptions were applied as for the Moss et al. (2011) data to convert the figures to 

kg/MWh. In the total aluminium demand is 1% of the iron requirement, therefore the 

aluminium requirement is set to 1% of the iron requirement.   

 

2.2.3 Hydroelectricity 

For the metal requirements of hydroelectricity data from da Silva et al. (2013) was used. This 

however is a case study, but the number of studies on the metal requirements of 

hydroelectricity is very limited. However, the authors compare their results to results of 

other studies and find they are in the same order of magnitude. 

 

2.2.4 Natural Gas, Coal & CCS 

The metal requirements for natural gas and coal electricity generation with and without CCS 

have been adopted from van der Giesen (2008). 

 

2.2.5 Nuclear 

For nuclear electricity the metal requirements have been obtained from Moss et al. (2011) 

and calculated in the same way as described for PV. A capacity factor of 90% and a lifetime of 

60 years are assumed (Keppler and Cometto 2012). Additional sources are needed for 

assessing the requirements of iron and aluminium but these have not been found. Iron and 

aluminium are currently not considered for nuclear power generation. 

 

2.2.6 Concentrated solar power 

The metal requirements for Concentrated Solar Power (CSP) electricity is based on a case 

study of two different advanced solar technologies, parabolic through and tower (Pihl et. al. 

2012). The metal requirements per MWh are calculated with the yearly energy production 

per installed capacity and the given lifetime (30 years), combined with the requirements for 

maintenance. Parabolic Through is currently the most deployed form of advanced solar 

power (CSP today, n.d.), therefore only this form of CSP is taken into account in the final 

metal demand. However it is possible that other forms of CSP will become a significant part 

of the market in the near future, and then the metal requirements need to be corrected for 

the market share of the different CSP technologies. 
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2.2.7 Electricity production mix 

Scenarios developed in WP3 by De Koning et al. (2014, 2015) are used. In this work two 

scenarios are presented with 2000 as base year. An extrapolation of current trends (BAU) and 

a techno scenario (TS) that assumes the large-scale implementation of probable technologies 

that will substantially reduce greenhouse gas emissions. For this work the initial energy data 

from the scenarios had to be specified  further, as to which energy technology will produce 

which amount of electricity. This was done for the TS by taking the total energy production 

from the mix calculation table and combining that with the specified data of the energy mix.  

For the base year a more specified dataset was created. This data was used to calculate the 

more specified requirements for BAU scenario by calculating the distribution of the different 

energy technologies and combining that with the total energy demand in that scenario. 

 

 

2.3 Land vehicles 

2.3.1 Number of vehicles 

To determine the effects of the electrification of the transport sector the number of the 

different types of vehicles in the different scenarios needs to be estimated. The current 

analysis is limited to passenger cars. The basic data is taken from the motor vehicles 

production sector in the different scenarios. This is monetary data not corrected for inflation. 

The total production of motor vehicles (not sold vehicles) in 2000 was 41 million (OICA n.d.). 

Combination with the monetary data gives an average of k€40 per car. In fact this figure is a 

simplification and does not give the actual production cost of a car, since the value 

represents the total value of the sector and the sector also consists of production of other 

goods such as trailers and trolleys or more expensive types of cars such as SUVs or hybrids. 

This number will be used as a rough estimation that is used to calculate the future production 

of vehicles in 2050 but only after it is corrected for the relative price difference for different 

types of vehicles in comparison to a fossil fuel driven vehicles, based on EPRI (2004). It is 

assumed that gasoline and diesel vehicles have the same relative price. However, in EPRI 

(2004) different types of cars (Passenger and City car) are compared in the sections on hybrid 

and electric vehicles (EV), so the relative price of hybrid and EV is determined according to 

the type of vehicle that they are compared to in the article. 

 

In De Koning et al. (2014) the market share of gasoline, diesel, battery-electric, hybrid-electric 

and plug-in hybrid vehicles are specified for the base case and the Techno scenario. The share 

of the different types of vehicles is assumed to be the same for the business as usual scenario 

(BAU) and base year. Together with the monetary data of the sector in the different scenarios 

and the relative price of the vehicles the number of the different types of vehicles is 

determined. 
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2.3.2 Metal requirements 

Data from Burnham (2012) is used to determine the metal demand per type of vehicle, since 

Burnham (2012) focuses on the metal demand of all the vehicle types specified in our 

scenarios. Data on the amount and distribution of the different metals in the vehicles and 

batteries are used to determine the requirements of the different types of metals per vehicle.  

However for the electric engine no data is given for the requirements of metals such as 

neodymium that are sometimes present in the permanent magnets in electric motors. 

Therefore, Hawkins et. al. (2012) is use to determine the more specific metal requirements 

for electric engines. This data is converted to the metal requirements per weight of the 

electric engine and together with the data of the weight of the electric engines the 

requirements of the metals that are not specified in Burnham (2012) are determined.  

Some additional assumptions have been made to obtain the metal demand. It was assumed 

that metal categories copper/brass (in the vehicle weight) and electronic parts (in the Li-ion 

battery) consisted of mostly copper. Additionally for the materials of which the chemical 

formula is given the requirements of the specific elements are determined according to their 

molecular weight. 

 

2.4 Infrastructure and building construction 

By far the largest amount of mineral and metal resources in the world are used in the 

construction sector. The construction sector provides such diverse products as bridges, 

motorways, canals, airfields, private houses, and factory buildings, including all wiring, 

plumbing and other building products that are needed to make a complete building. 

The calculation of the amounts of metals used in the current worldwide construction work is 

problematic because such diverse products are produced by the construction sectors. A 

bottom-up analysis where detailed data for specific construction products are collected and 

subsequently scaled up to world level will likely be unsuccessful. 

Instead a top-down approach has been used to make a rough estimate of the current and 

future rates of metal resource use. The same data and models used to make the different 

GHG emissions scenarios (De Koning et al., 2014, 2015) were exploited to calculate cradle – 

to – grave metal resource use associated with construction. To do so the EXIOBASE supply-

and-use tables (SUTs) which form the basis for specifying the GHG scenarios where extended 

with information about metal ore extraction data. Similar to the calculation of GHG emissions 

associated with the consumption of specific products, also the metal ore extraction 

associated with the consumption of products could be calculated. 

The number of metal ores that could be distinguished by this approach is limited. These 

metal ores categories are shown in Table 2-1. The estimated metal content of the ore has 
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based on an overview of average metal content of ores presented by Philips and Edwards 

(1976). 

 

Table 2-1 Metal ores that could be associated with construction work in the top – down analysis 

Ore Element Me content (kg Me/kg ore) 

iron ores Fe 0.147 

bauxite and aluminium ores Al 0.111 

copper ores Cu 5.21x10
-3

 

lead ores Pb 5.11x10
-2

 

nickel ores Ni 3.88x10
-3

 

tin ores Sn 6.76x10
-3

 

uranium and thorium ores U 5.65x10
-4

 

zinc ores Zn 2.82x10
-2

 

precious metal ores ? ? 

rare earthes ores ? ? 

other metal ores ? ? 

 

Bulk metal use in EXIOBASE is well represented but precious metals and rare earth metal use 

of the construction work cannot be estimated.  

Using the data in Table 2-1 the global metal resource use in the actual year 2000 could be 

calculated and the metal resource use per unit of construction work output. The global metal 

resource use in the BAU 2050 scenario and TC 2050 were subsequently calculated by 

multiplying the output of the construction sector taken from the BAU 2050 and TC 2050 with 

the metal use per unit of output as calculated for the actual year 2000. Thus we assume that 

there is no change in the amount of metals being used in construction work in 2050.  

 

2.5 Transmission & buffering 

The amount of additional transmission and storage that is required depends on the share of 

intermittent renewable energy technologies, such as wind, CSP and PV.  Buffering can be 

provided by either getting electricity from other areas with long distance transmission or 

more local storage. However, since the share of renewable technologies that require 

additional transmission or buffering is only 0,20% for the BAU scenario and 6% for the techno 

scenario, buffering is provided from the remaining 94-99% of the production. 
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3 Results 

3.1 Metal resource use by energy generation technologies 

In Table 3-1 the metal requirements of the different energy technologies investigated are 

presented. 

Table 3-1 Life cycle metal requirements for the different energy technologies expressed in kg/MWh.  

Elem. PV Wind Hydro Natural 

Gas 

Natural 

Gas+CCS 

Coal Coal 

+CCS 

Nuclear CSP 

Sourc
es 

Moss et 
al., 2011 

Laleman 
et al., 
2013 

Moss et 
al., 2011 

Wilburn, 
2011 

da Silva 
et al., 
2013 

van der 
Giesen, 

2008 

van der 
Giesen, 

2008 

van der 
Giesen, 

2008 

van der 
Giesen, 

2008 

Moss et 
al., 2011 

Pihl et al., 
2012 

Fe 4.65 1.46 0.138 1.11 1.46 1.34 2.14 0
*
 8.07 

Al 3.69 1.46E-02   8.00E-03 1.00E-02 3.20E-02 4.70E-02 0
*
 6.98E-03 

Cu 0.370 1.74E-02 2.45E-03 6.00E-03 8.00E-03 1.20E-02 1.80E-02 1.26E-04 2.92E-02 

Ni   1.01E-02   2.60E-02 4.30E-02 3.10E-02 6.60E-02 5.40E-04 8.59E-03 

Cr   1.37E-02   7.00E-03 1.30E-02 6.00E-03 1.70E-02 9.02E-04 2.01E-02 

In 1.03E-04             3.38E-06   

Nd   6.18E-04               

Dy   4.26E-05               

Cd 1.39E-04             1.06E-06   

Ag 4.38E-04             1.75E-05 1.23E-04 

Mo   2.08E-03   1.00E-03 1.00E-03 4.00E-03 7.00E-03 1.50E-04 1.83E-03 

Mn   1.23E-03     1.00E-03 4.00E-03 7.00E-03   1.83E-02 

Pb 9.36E-02             9.09E-06   

Ga 2.74E-06                 

Se 7.42E-05                 

Sn 1.06E-02             9.72E-06   

Te 1.07E-04                 

Hf               1.01E-06   

W               1.06E-05   

Y               1.06E-06   
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Elem. PV Wind Hydro Natural 

Gas 

Natural 

Gas+CCS 

Coal Coal 

+CCS 

Nuclear CSP 

Nb               4.23E-06 0 

Zr               6.45E-05   

V               1.27E-06 1.74E-05 

Ti               3.17E-06 2.28E-04 

Zn         1.00E-03 1.00E-03 3.00E-03   5.94E-03 

Mg                 2.83E-02 

* The cradle to gate metal requirements are not known and set to zero 

 

The metal requirements of the different energy production technologies given in Table 3-1 

can be combined with the production volumes as specified by the different scenarios. The 

energy production volumes are given in Table 3-2. The energy production mix and volumes 

for the year 2050 are largely based on EMF-21 scenario study described by Jakeman and 

Fisher (2010). 

Table 3-2 Energy production of different energy technologies for the year 2000 and BAU and techno scenario (De Koning 
et. al. 2014) 

Region 

Actual Year 

2000 

BAU Scenario 

2050 

Techno Scenario 

2050 

EJ EJ EJ 

Nuclear 9.3 31.7 31.5 

Solar PV 0.0 0,0 1.9 

Advanced Solar     3.9 

Wind 0.1 0.4 3.6 

Bio-energy (including waste for 2000 & BAU) 4.6 15.8 0.0 

Coal 21.5 73.2 18.4 

Gas 9.9 33.8 19.6 

Coal + CCS     15.1 

Gas + CCS     15.2 

Bio-energy + CCS     4.4 

Hydro (Including  Geo-thermal for Techno) 9.3 31.6 48.2 

CHP 0.0 0.0   

Total 54,8 186.6 161.9 
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Notice that the introduction of CCS on bio-energy leads to removal of CO2 from the 

atmosphere in the TS. 

 

3.2 Metal resource use by new cars 

In Table 3-3 the number of produced vehicles in the different scenarios and the base year is 

presented, based on the final consumption volume of cars as available in the scenarios 

developed by De Koning et al. (2014). Additionally the relative price of the different vehicle 

types is presented based on EPRI (2004). 

 

Table 3-3: The relative price of different vehicle types and the number of the vehicles produced in the actual  year 2000,  
the 2050 BAU scenario, and 2050 techno scenario 

Type of vehicle Relative price 
Number of new cars (million) 

Actual Year 2000 BAU Scenario 2050 Techno Scenario 2050 

Gasoline 1.00 31.45 69.06 2.38 

Diesel 1.00 8.66 18.88 5.85 

Full-electric 1.36 0.00 0.00 43.58 

Hybrid-electric 0.97 1.08 1.89 7.98 

Plug in Hybrid-electric 1.01 0.00 0.00 41.77 

Total  41.18 89.83 101.57 

The metal requirements of the different vehicle technologies taken from the literature as 

discussed in Section 2.3.2 are presented in Table 3-4. Both batteries and engines have been 

taken into account. 
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Table 3-4 Material requirements of different vehicle technologies for passenger cars in kg/vehicle. 

Element 

Internal Combustion 

Engine Vehicle 

Hybrid Electric 

Vehicle 

Plug-in Hybrid Electric 

Vehicle 
Electric Vehicle 

kg/vehicle kg/vehicle kg/vehicle kg/vehicle 

Fe 964 1016 1047 1295 

Al 92 105 119 244 

Cu 26 66 79.4 166 

Mg 0.27 0,29 0.30 0.39 

Ni 0.00 0.00 0.00 0.00 

Pt 0.01 0.00 0.00 0.00 

Pb 11.3 6.89 6.89 6.89 

Li   0.21 1.09 8.43 

Mn   3.05 16.0 125 

Nd   0.01 0.01 0.03 

B   0.01 0.01 0.03 

 

 

3.3 Metal resource use in construction 

The calculated metal resource use in construction work in the actual year 2000, the BAU 

scenario and TC in 2050 are given in Table 3-5. 

 

Table 3-5 Metal requirements for construction work in kg/year 

Metal Actual Year 2000 BAU Scenario 2050 Techno Scenario 2050 

Fe 3.23 x 10
10

 7.91 x 10
10

 7.93 x 10
10

 

Al 2.97 x 10
9
 8.00 x 10

9
 8.02 x 10

9
 

Cu 2.16 x 10
9
 5.95 x 10

9
 5.97 x 10

9
 

Pb 3.69 x 10
8
 1.02 x 10

9
 1.02 x 10

9
 

Ni 1.47 x 10
8
 4.30 x 10

8
 4.31 x 10

8
 

Sn 2.38 x 10
8
 7.10 x 10

8
 7.12 x 10

8
 

U 1.88 x 10
6
 5.94 x 10

6
 5.96 x 10

6
 

Zn 1.31 x 10
9
 4.10 x 10

9
 4.12 x 10

9
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3.4 Total metal resource use  

The total yearly metal resource use, summing up the use of metals by land vehicles, new 

construction work and energy systems is given in Table 3-6. Because a limited number of 

metals could be taken into account when calculating the amount of metals in construction 

work (see Section 2.4), the total yearly metal resource use could be calculated for a limited 

number of metals only. The values given for chromium, indium, neodymium, dysprosium, and 

lithium are based on the metal use of electricity generation technologies and land vehicles 

only.  

 

Table 3-6 Total global yearly metal demand for the actual year 2000, BAU 2050 scenario and Techno 2050 scenario for the 
electricity production sector, construction work and land vehicles together. The supply data for Fe, Al, Cu, and Ni have 
been taken from EXIOBASE for the year 2000. The supply data for Cr, In, Nd, Dy and Li have been taken from the USGS for 
the year 2000.    

 Total metal demand from electricity production  

construction work and land vehicles (kg) 

Annual mine 

production 

2000/2008 

(kg)  

requirement/production-2000 

Actual Year 

2000 

BAU Scenario 

2050 

Techno 

Scenario 2050 

Actual 

Year 

2000 

BAU 

Scenario 

2050 

Techno 

Scenario 

2050 

Fe 8.35 x 1010 2.05  x 1011 2.38  x 1011 1.60  x 1011 0.52 1.28 1.49 

Al 6.99  x 109 1.70  x 1010 2.77  x 1010 2.29  x 1010 0.30 0.74 1.21 

Cu 3.35  x 109 8.66  x 109 1.77  x 1010 9.15  x 109 0.37 0.95 1.94 

Ni 4.05  x 108 1.31  x 109 1.21  x 109 4.36  x 108 0.93 3.00 2.79 

Cr 5.75  x 107 1.96  x 108 2.40  x 108 6.98  x 109 0.01 0.03 0.03 

In 8.78  x 103 2.99  x 104 8.41  x 104 5.73  x 105 0.02 0.05 0.15 

Nd 1.34  x 104 2.35  x 104 2.80  x 106 1.80  x 107 0.00 0.00 0.16 

Dy 0 0 4.66  x 104 1.00  x 105 0.00 0.00 0.47 

Li 2.22  x 105 3.88  x 105 4.14  x 108 3.82  x 108 0.00 0.00 1.08 

 

As can be seen in Table 3-6 the sum metal use as calculated from the use by the electricity 

generation technologies, land vehicles and construction work does not equal yearly mine 

production in 2000/2008. The technologies that are explicitly taken into account use a large 

share of the mined bulk metals iron, aluminium, copper and nickel. However that cannot be 

said for the metals chromium, indium, neodymium, dysprosium, and lithium. Only a very 

small fraction of the mining supply is taken up by electricity generation technologies, land 

vehicles and construction work. Likely most of these metals are used in electronics, glass and 
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ceramics and these applications are not accounted for in the calculation of the demand of 

metals in Table 3-6. 

Notice the very large increase in the demand for neodymium and lithium in the TS, 

considering the electricity production sector, building sector and land vehicles together. 

Expected increase in the use of neodymium is a factor 200 and for lithium the demand is 

even 2000 times higher in the electricity production sector, construction work and land 

vehicles applications. However, while looking at these sectors only the rise in demand seems 

dramatic, the overall rise in demand (see Table 3-7) is much less pronounced, something like 

a factor 3-4. 

To make an assessment of the demand for metals in products that have not been taken into 

account explicitly, we assume that yearly metal mining supply and demand are by and large 

in balance, and that recycling can be neglected. The gap between mining supply and demand 

as shown in Table 3-6 is assumed to be fully taken up by other products such that the supply 

and demand in 2000 is in balance. Subsequently the use of metals in these other products 

has been scaled proportionally to GDP to make a rough estimate of the use of metals in 2050. 

The calculated total metal use is shown in Table 3-7. Also shown for reference is GDP growth 

(OECD, 2012).  

 

Table 3-7 Total global yearly metal demand for the actual year 2000, BAU 2050 scenario and Techno 2050 scenario all 
products. The supply data for Fe, Al, Cu, and Ni have been taken from EXIOBASE for the year 2000. The supply data for Cr, 
In, Nd, Dy and Li have been taken from USGS for the year 2000.    

 Total metal requirements (kg) Annual mine 

production 

2000/2008  

requirement/production-2000 

Actual Year 

2000 

BAU Scenario 

2050 

Techno 

Scenario 2050 

Actual 

Year 

2000 

BAU 

Scenario 

2050 

Techno 

Scenario 

2050 

Fe 1.60 x 1011 4.50 x1011 4.80 x 1011 1.60 x 1011 1.00 2.82 3.01 

Al 2.29 x 1010 6.83 x 1010 7.83 x 1010 2.29 x 1010 1.00 2.98 3.42 

Cu 9.15 x 109 2.73 x 1010 3.62 x 1010 9.15 x 109 1.00 2.99 3.95 

Ni 4.36 x 108 1.41 x 109 1.31 x 109 4.36 x 108 1.00 3.23 3.01 

Cr 6.98 x 109 2.25 x 1010 2.23 x 1010 6.98 x 109 1.00 3.22 3.19 

In 5.73 x 105 1.85 x 106 1.88 x 106 5.73 x 105 1.00 3.22 3.28 

Nd 1.80 x 107 5.80 x 107 6.00 x 107 1.80 x 107 1.00 3.22 3.33 

Dy 1.00 x 105 3.22 x 105 3.65 x 105 1.00 x 105 1.00 3.22 3.65 

Li 3.82 x 108 1.23 x 109 1.63 x 109 3.82 x 108 1.00 3.22 4.26 

        

GDP     1.00 3.21 3.21 
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In Table 3-7 it can be seen that in the BAU scenario the demand for iron, nickel and 

chromium grows approximately as fast as GDP. The growth in nickel and chromium is for a 

large part coupled to that of iron as alloy elements in steel and stainless steel.   

In the TS the introduction of all kinds of CO2 emission reduction technologies raises the 

demand growth of aluminium, copper, indium, neodymium, dysprosium and lithium above 

the level of economic growth but not very much. The largest growth is seen in lithium where 

the demand growths a factor 4.3 in 35 years’ time (4.25% p.a.). Please notice that while the 

specific application of lithium in car batteries increases 2000 times, the overall demand 

growth of lithium is only a modest factor 4 (4% p.a.). The increase in lithium in car batteries is 

in reality likely less pronounced because our estimate of lithium use in car batteries for the 

actual year 2000 is very low compared the values reported by the lithium manufacturers 

(Roskill, 2009). It is reported that about 10% of the lithium is used in batteries. According 

Gruber et al. (2011) in 2007 about 25% of the lithium is used in batteries. In contrast to those 

number we calculate that about 0.1% if the produced lithium is used in batteries. In the 

overall picture the yearly demand growth is between 2.2% for iron and 2.9% for lithium.  
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4 Discussion 

4.1 Metal resource use in 2050 

The ball park high estimates for total metal use in 2050 as shown in Table 3-7 are rough 

guesses at best. The estimates are for a large part dominated by linear extrapolation of GDP 

growth and constant metal composition of general products. They incorporate for small part 

specific information on changing technology and associated metal content. It is therefore not 

a big surprise that the total estimated metal use increase closely follows expected GDP 

projections. The estimated increase in demand for metals is between 2–3% per year, which is 

well within bounds that can be met by suppliers, and this increase in demand is even a high 

estimate. These are rather modest growth percentages that are not out of the ordinary and it 

has been demonstrated in the past that such demand growth can readily be met by supply 

over longer times (Kleijn et al., 2012). Historical data on supply of iron, aluminium and copper 

(Kleijn et al., 2012) show that in the 20 years from 1995 and 2014 supply grew yearly 

between 20% - 28%. From this viewpoint, it seems that metal supply will in general be able to 

keep up with metal demand driven by a successful climate policy. 

However because of the generality of our assessment, for metals that are going to be used in 

an application for which there is going to be a large demand, supply constraints may apply. A 

small hint of this issue can be seen in the analysis made. For energy technologies that will see 

much larger application in the future and contain specific metals, the amount of metal going 

into the application grows quickly. We see this effect for the metals neodymium in energy 

technology and lithium in land vehicles. The application of neodymium in energy technology 

increases a factor 1800 (16% p.a.), the application of lithium in land vehicles increases a 

factor 162 (10% p.a.) from 2000 to 2050. These large increases of these specific metals in 

specific technologies are masked by the general use in other applications as shown in Table 

3-7. 

 

4.2 Metal resources used until 2050 

Using our assessment of the yearly metal demand in 2050 in the TC, a simple assessment can 

be made of the total amount of metals needed until 2050 by linear interpolation of the metal 

demand in 2000 and 2050. The estimates are highly dependent on the estimated use of 

metal in 2050 in the TC. Given that the TC is high mark for metal use in 2050, the total 

amount of metal reserves used until 2050 is a high mark as well. The estimated total 

cumulative demand for metals is given in Table 4-1. These amounts can be compared to the 

economic reserves that exist today. Economic reserves is defined that part of the reserve 

base which could be economically extracted or produced at the time of determination. The 

term reserves need not signify that extraction facilities are in place and operative (USGS, 
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2015). The economic reserves that are available today can be seen as the amount of resource 

that for sure can be extracted until 2050 from a technical and economic point of view. 

Investment uncertainties and rate of opening these economic reserves might still be an issue. 

There might also be regulatory or political barriers that make exploitation problematic. The 

economic reserves are probably a low mark for the reserves that are available until 2050. 

Increasing metal prices, new technologies and new discoveries can only increase the amount 

of economic reserves. The economic reserves of the different metals have mostly been 

estimated based on figures given by the USGS (2015).  Indium reserves were taken from 

USGS (2007) and neodymium reserves were based on estimates of rare earth ores (USGS, 

2015) and assuming that the rare earth ores contain 18.5% neodymium (Bastnasite from 

Bayan Obo, Inner Mongolia, China (Zhang et al, 1982)). 

 

Table 4-1 Total global cumulative metal demand from 2000 until 2050 in the TS 2050. The cumulative demand was 
calculated by linear interpolation between the yearly demand for these metals in the actual year 2000 and the yearly 
demand for these metals in the TS 2050. The data on the economic reserves were mostly based on data given by the USGS  
2015. The data on Indium reserves were taken from the USGS (2007). Economic reserves for neodymium were based on 
aggregated rare earth reserves (USGS, 2015) and a rough estimate of the neodymium content of the rare earth ore 
currently processed in China (Zhang et al, 1982), the main supplier of neodymium.     

Element Unit Cumulative demand 

until 2050 – TS 2050 

Economic reserves  

≈ 2014 

Demand/reserve 

Fe kg 1.63 x 1013 8.70 x 1013 0.19 

Al kg 2.58 x 1012 7.41 x 1012 0.35 

Cu kg 1.16 x 1012 7.00 x 1011 1.65 

Ni kg 4.46 x 1010 8.10 x 1010 0.55 

Cr kg 7.46 x 1011 1.64 x 1011 4.54 

In kg 6.25 x 107 2.80 x 106 22.33 

Nd kg 1.99 x 109 9.56 x 109 0.21 

Li kg 5.13 x 1010 1.35 x 1010 3.80 

 

Interestingly the high mark for cumulative demand of iron, aluminium, nickel and 

neodymium until 2050 can be met by the currently know economic reserves of metals. It 

does not mean that no further development of mines is necessary but mines can probably 

provide these metals at roughly the same price as of today, because future demand can be 

satisfied by current known economic reserves. A more precise analysis can be made if supply 

curves are available but has not been carried out within the  scope of this study. For copper, 

chromium, indium, and lithium the current economic reserves as known today are not 

sufficient to provide the cumulative demand for metals until 2050. Metal prices have to 

increase or improvements in mining and refining technology have to be made to be able to 

expand the economic reserves to be able to satisfy cumulative demand until 2050 for these 
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metals. These economic reserves have to double for copper and increase twenty times for 

indium.  

This yearly expansion rate of the economic reserves of copper, chromium and lithium by 

technological progress and/or price increases, needed to be able to satisfy cumulative 

demand until 2050 is modest, between 1.4% and 4.3%. However for indium this increase is 

9% per year. Indium is a special case however. It is only produced as a by-product of zinc 

refining. Most zinc refineries do not yet extract indium in their process while they might do 

so if the price of indium increases, then expanding their supply. 

The cumulative demand/economic reserve ratio given in Table 4-1 is based on our uncertain 

but likely high mark for metal demand in 2050 and uncertain but probably low mark for 

economic reserves available in 2050. All in all it suggests that the availability of metals is not 

an essential bottleneck for the development of successful climate policies. A previous study 

on future supply and demand of lithium reported by Gruber et al. (2011) conclude, like we 

do, that lithium availability will not constrain the electrification of the automobile during the 

present century. Moreover it seems likely that iron, aluminium, nickel and neodymium can be 

supplied in 2050 at the same price as of today. Nonetheless these results are not a reason for 

complacency; mines have to be developed, and for some metals the economic reserve has to 

be expanded. There might be substantial challenges to expand the supply in a timely manner 

or there might be regulatory, political or market barriers to do so which will be further 

discussed below.  

 

4.3 Supply rate constraints 

As discussed in Section 4.1 the demand for metals increases up to a factor 4.2 for Lithium 

which is likely a high estimate. In Section 4.2 we saw that current economic reserves are 

sufficient for the supply of iron, aluminium, nickel and neodymium. For copper, chromium, 

indium and lithium the economic reserves have to be expanded. While the yearly increase in 

the supply needed to satisfy the demand are quite modest compared to recent historical 

data, there are reasons not to be complacent. 

o The opening up of a large deep open-cast mine can take decades. If the metal supply 

has to increase in a decades time, investments have to take place now while the 

return on investment is uncertain. 

o Expanding mines, even if it is to exploit current economic reserves, has negative local 

environmental consequences. Especially if these reserves are located in fragile 

environments. 

o For some metals new resources have to be found, possibly with lower metal ore 

concentrations than are currently available. Extracting metals from ore bodies with 

lower metal concentration means that more energy, water and auxiliary materials are 

needed to extract the metal leading to higher environmental impacts associated with 
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the mining of these new resources. In addition there will be extra local environmental 

impacts as well. Efficiency increases will counter these effects, more, or less.  

 

How fast mining capacity can be expanded is difficult to envisage. Although in general the 

rate of expansion needed to keep up with supply is similar to historical rates of expansion as 

found for aluminium and iron, short term imbalances between demand and supply may 

occur, see also Section 4.4 and 4.5.  

The uncertainty about return on investment will mean that mining corporations will be very 

cautious opening up new mines, especially in case of long gestation periods to full 

production. Uncertainty can be reduced, although very partially, by providing convincing 

long-term climate policy pathways. However as we have seen the demand for metals is for a 

large part driven by changes in infrastructure and ICT and not by changes in the energy 

system.  

Providing high quality public information on the coupling between climate policy pathways 

and expected demand for metals is essential for mining companies. Only by reducing the 

uncertainty about their return on investment, can they react to future changes in the 

demand for metals.  

  

4.4 Regulatory and political barriers 

Opening up new mines by definition means additional environmental impacts. These range 

from severe local environmental impacts as well as upstream impacts in the form of 

additional use of energy, water etc. Large open cast mines will forever change the way the 

landscapes look like. To keep the local environmental impacts within acceptable limits, 

governments may restrict the development of resources, driving up the price of the mining 

activities. On the other hand governments, in the search for extra revenues, might push the 

development of new mines, giving less attention to environmental and labour issues. 

The links between resource extraction, energy use and water resource use has been called 

the mineral-energy nexus (Giurco et al., 2014). Future regional food and water stress and 

political instability might make (economic) reserves unavailable creating a bottleneck in the 

supply of metals. Bleischwitz et al (2013) made an analysis of resource-rich countries with 

relevant reserves of strategic reserves that are politically unstable and where future food and 

water stress is likely. In these countries resource-driven conflicts that may be triggered by 

food and water shortages might escalate into socio-economic breakdowns with subsequent 

interruption of the supply chain of metals (Bleischwitz et al., 2013). An example of such a 

situation can be found in the Niger delta. The results of the analysis by Bleischwitz et al.,  

indicates that the likelihood of such interruptions is quite large. About 15 countries are at 

high risk of supply chain interruptions which might affect lithium, copper, nickel, cobalt, 

bauxite, iron and platinum. 
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To be able to better get to grips with the long-term mineral – energy nexus and broader 

sustainability issues surrounding resource use, Giuarco et al. (2014) proposes a research 

agenda that includes (1) taking a longer-term perspective (2) really take the linkages between 

resource extraction energy use and water use into account (3) responsible mining initiatives 

(4) mastering recycling technology in countries where the end use takes place. 

It is highly uncertain how regulatory and political barriers might influence the supply rate of 

metals. A level playing field for all mining operations seems to beneficial as it will make sure 

that the resources that can be developed with the least environmental impacts are brought 

into operation first. 

 

4.5 Markets and corporations 

Commodities that can only be produced with large upfront investments, investments that are 

only recouped in decades time, are naturally produced by a few global firms. Only these very 

big corporations are able to bear the large upfront investments in uncertain markets. 

Computer chips, fossil fuels and metal resources are examples of such commodities. Thus 

there is a natural tendency to form oligopoly or even monopoly market forms. By creating an 

oligopoly or monopoly market form uncertainty about future market prices are reduced 

because they can be influenced more or less by reducing or increasing supply. 

It is important to note that many basic commodity suppliers are state-owned or are closely 

tied to the state. The behaviour of the mining corporations might therefore not be influenced 

by market forces alone but also by political interests. Political interests might try to stifle 

foreign competition or create more favourable market conditions for their own industries. 

The natural tendency to form oligopolies or monopolies, although beneficial for the mining 

corporations, has its drawbacks. First of all, the corporations will seek out the best return on 

investment which will likely drive up prices for metals needed in the energy transition. 

Moreover metal supply might be supplied to certain industries creating barriers to a low 

carbon economy.  

In a competitive market with multiple suppliers, metal prices will likely fluctuate strongly. 

 

4.6 Substitutability 

4.6.1 Elemental and resource substitution 

There are two reasons to substitute one element for another. One is that the alternative 

element provides extra functionality. The second is that the alternative element is cheaper 

but often at the cost of functionality. Innovation often leads to elemental substitution 

improving the characteristics of materials. As a response to the threat of material scarcity 

most of today’s scientific and engineering research is aimed at elemental substitution. 
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Elemental substitution holds great promise to alleviate metal resource constraints specially if 

the alternative element is an abundant element such as carbon.  

4.6.2 Functional substitution and dematerialization 

Examples of functional substitution are the replacement of photographic film by digital 

photography and the replacement of paper mail and fax by email (Kleijn et al., 2012). In 

general the relative importance of materials has changed considerably in the economy some 

increased and other decreased. However in absolute and per capita terms. the consumption 

has increased. The amounts of stone and bronze and iron we use now is much higher than in 

the ages named after these materials. This is the same for energy. Oil and natural gas have 

not in absolute terms replaced coal. They have just been additional to coal (Kleijn et al., 

2012). Thus it seems that functional substitution has not lead to an absolute decrease in 

metal resource use in the long-term. However it certainly has contributed to a reduced 

absolute growth in metal resources. Looking at long term global trends of iron, aluminium 

and copper ore the period after WWII can be characterised as the period in which metal use 

per capita increased sharply until the oil crisis in the beginning of the 1970s (Kleijn et al., 

2012). Of course, absolute ore production increased also because population grew as well. 

From the beginning of the 1970s until the beginning of the 21st century, the  

Dematerialisation is used to describe a process that leads to a decrease in the amount of 

material to fulfil a certain function. There are several ways to achieve this. Two concepts that 

might lead to dematerialisation are miniaturisation and the service economy. 

Miniaturisation has been very prominent in the form of ever smaller and more powerful 

computer chips as used in electronics and computers. However it is not so clear if this 

miniaturisation has led to reduced material use  from a lifecycle perspective. The amount of 

energy and materials to create these ever smaller chips has increased. Another mechanism 

that reduces the effect of miniaturisation is that these smaller devices  can be used in ever 

more appliances creating additional demand for electronic appliances. Miniaturisation 

created a market for mp3 players but also brought the need for new infrastructures such as 

2G, 3G and 4G networks with all its associated metal resource requirements in the form of 

millions of cell phone towers, land lines and data warehouses.  

The service economy also holds out promise for dematerialisation the economy. Car-sharing 

schemes is one such example. Another example is the use of e-services where newspapers, 

magazines or books are delivered in electronic form and read on a e-ink device. Not much is 

known about the reduced metal resource use of service economy solutions but some 

solutions might lead to 50% less resource use (Moberg et al., 2010).   
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4.7 Recycling 

Recycling can be seen as a way to expand the economic reserves with the stocks that are 

available within society, so-called urban mining. However up to 2011 less than 1% of the REEs 

were actually recycled (Binnemans et al., 2013). Recycling rates of rare-earths are so low 

because the technology to recycle at a cost effective price is lacking and because of the 

diffuse application of the rare earths. 

For instance recycling of neodymium from magnets in computer hard drives, a high quality 

concentrated source of neodymium magnets, cannot be made cost-effective (Sprecher et al., 

2014). However it has been established that recycling will always be an improvement over 

primary production, the large losses of material incurred while shredding the material puts 

serious doubts on the usefulness of this type of recycling as a solution for scarcity. 

Furthermore, our LCA also shows that technological progress can make a significant 

difference in the environmental impact of producing neodymium magnets from primary 

sources (Sprecher et al., 2014). In general REE recycling can reduce the environmental 

challenges associated with REE mining and processing (Binnemans et al 2013).  

For bulk metals that are mainly used in infrastructure such as iron, aluminium and copper 

current recycling rates are already significant and the build-up of infrastructure (at least in 

the Europe and America) has for a large part already taken place. Recycling of in these cases 

can  be an important supply source in 2050. Pauliuk et al. (2013) examined steel supply and 

demand for the 21st century and predicts that secondary steel production will more than 

double by 2050, and it may surpass primary production between 2050 and 2060. Recycling of 

iron could therefore lower the demand for iron ore significantly.  

In 2010 secondary aluminium could already supply 30% of global demand and it is expected  

to supply 30% of global demand by 2020 (International Aluminium Institute, 2009) thus 

lowering the demand for primary aluminium. 

In our model we have a poor view on recycling cycles and hence primary demand. However 

this shortcoming only strengthens our conclusion that supply can keep up with demand 

because demand is overestimated. Nonetheless for a better insight into future primary 

supply it is essential to integrate primary and secondary supply in scenarios and to establish 

inter-linkages with macro-economic modelling. 

While recycling does not seem to alleviate rare earth bottlenecks in the near future because 

so little rare earth waste leaves the economy at the moment compared to demand (rising 

demand and long life times of products imply that the amount of rare earths in the waste 

stage is a fraction of primary demand). So the recycling rates are low compared to primary 

demand. Yet, it is important to invest in the technology. In a steady-state economy, recycling 

can be an important source of supply while likely having smaller environmental impacts.  

For bulk metals, recycling is already important and likely will become a dominant source for 

metals by 2050. However important issues remain such as the quality of the recycled metals 

(Nakamura et al., 2012). More research is needed to see in how far secondary sources can 

provide high quality alloys. 
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4.8 Missing information 

Additional research is needed on the metal requirements of the energy technologies like bio-

energy, with and without CCS and combined heat and power (CHP). However the amount of 

CHP that is required is so low that it will probably not have a significant impact on the results. 

Additionally data needs to be found for the metal requirements of iron and aluminium of 

nuclear electricity. 

Furthermore, more general data could be found for some of the energy technologies, since 

some of the metal requirements are based on case studies, such as for advanced solar power 

and PV iron and aluminium requirements. This can also explain why the requirements for iron 

and aluminium of PV are so high in comparison to the other energy technologies. 

For a lot of rare earth metals the analytical framework could not be fully completed, keeping 

open the possibility that future supply and demand of these metals are a bottleneck. 

In addition the research might not include the data requirements for all subtypes of the types 

of energy, like the data for iron and aluminium for wind energy, which is based on a research 

that focuses on onshore wind and does not take into account offshore wind.  

Nevertheless, in any investigation the results of the metal requirements are always 

influenced by the decisions made in the research such as the system boundary, lifetime, 

location, etc. Because the requirements are based on researches performed by others, there 

will be a large variation in these assumptions between the different studies. 

Another point to be considered is that installing most of the electricity forms require large 

amounts of metals in the installation and mostly only a little amount of metals during 

operation. Since the scenarios only look at a single year it is very well possible that the 

required metals were already necessary during installation earlier than 2050. An alternative 

to solve this issue is to investigate the required extra electricity capacity.    

The results of this research can be used to estimate the global demand of metals if it is 

combined with the growth and demand of metal requirements of other sectors. As 

mentioned earlier a development that needs to be considered and is described in the 

scenarios is the application CCS to other forms of industry. When estimating metal demand in 

the future, this can then be used to compare with current metal production and how much 

this needs to be scaled up to fulfil this demand, so that possible metal constraints can be 

identified. 
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5 Conclusions 

Demand and supply of metals until 2050 under influence of successful climate policy is highly 

uncertain. By examining corner cases it can be established that for iron, aluminium, nickel 

and neodymium the supply until 2050 will probably easily keep up with demand. If there are 

no regulatory and/or political constraints for expanding current mines or exploiting new 

economic reserves, it is likely that the prices of these metals will not increase substantially in 

the long run. For several rare earth metals the analytical framework could not be fully 

completed, keeping open the possibility that future supply and demand of these metals 

constitute a bottleneck. 

Providing high quality public information on the coupling between climate policy pathways 

and expected demand for metals is essential for mining companies to react to future changes 

in the demand for metals and might reduce their uncertainty about their return on 

investment. 

A level playing field for all mining operations seems to beneficial as it will make sure that the 

most attractive resources that can be developed, with the least environmental impacts are 

brought into operation first. 

Oligopolistic or monopolistic market tendencies have to be counteracted to prevent build-up 

of too much power to influence markets, specifically if the oligopolistic/monopolistic firm has 

close ties to governments. In a competitive market metal prices will likely strongly fluctuate. 

Recycling of the rare earths likely will play a small role in the supply of rare earths. Recycling 

rates will likely be rather low the coming decades because of the diffuse application of these 

metals in difficult to separate matrices. Also as long as society is building up stocks in the 

form of products in use, the return flow can only be modest in comparison with the new 

supply. For bulk metals, secondary sources are already important and will become more 

important or even dominant by 2050. It is important to get a better view on the long–term 

amount and quality of secondary sources, possibly by integrating primary and secondary 

supply in scenarios and link this to macro-economic modelling.  

Elemental substitution can play a large role in diminishing (temporarily) the need for some 

metals. 

 The most policy relevant conclusions are: Predictability of effectiveness of climate policy 

is a key factor in having adequate future supply, especially for metals where lead time to 

new mine production is long. 

 Public research on substitution options for highly critical metals can reduce constraints. 

 Functioning global markets reduce supply risks of critical metals, especially as compared 

to bilateral contracting. 
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