

Ancillary benefits of climate change mitigating policies: Are there any benefits from reducing carbon?

Jan Melichar and Milan Ščasný

Charles University in Prague

Emanuele Massetti and Samuel Carrara

(FEEM) – Econ impact modelling by WITCH model

Future Options for EU Climate Policies and their Public Acceptability 22 October 2014, Charles University in Prague

The Problem and Motivation

Debate over climate change mitigation ⇒

- limited success of policymakers to agree on an international regime for controlling emissions
- only around 12 % of global emissions covered by pricing programs (carbon taxes, emissions trading) at present
- reducing GHG emissions seen as free-rider problem
- individual countries bear the costs of reducing the emissions, when the benefits largely accrue to other countries and far in the future (lan Parry, iMF, 2014)
- much of the debate narrowed to the direct cost estimates

Air quality benefits

However, the arguments ignores the short-term air quality environmental benefits from reducing GHG emissions ⇒

- WHO (2014) estimates that in 2012 around 7 million people died as a result of air pollution exposure (cited in Lanzi 2014)
- OECD (2014) finds that the total economic costs of deaths from ambient air pollution amount to 1.6 trillion
 USD in 2010 in OECD countries (cited in Lanzi 2014)

Background

- Strategies for GHG emission reductions (**GHG mitigating policies**) \Rightarrow moving away from the use of fossil fuels (e.g. energy sector)
 - Fuel substitution

 carbon-free fuels or fuels with low carbon content (e.g. renewables, nuclear energy)
 - Fuel efficiency improvements ⇒ cogeneration (CHP), Integrated Gasification
 Combined Cycle (IGCC)
 - Carbon capture
- Climate mitigating policies lead to the reductions of non-GHG emissions
- Air quality improves (ground-level air pollution: PM, SO_2 , NO_X , O_3 , toxic pollutants) in the short term
- It brings ancillary health and environmental benefits ("co-benefits")
- The resulting reductions in damages to human health, crops, ecosystems, materials represent real economic benefits

Critical Role of Co-Benefits

- Reducing GHG emissions can have significant complementarities with domestic environmental targets and can induce direct beneficial spillovers to the local economy → "ancillary benefits" of climate change mitigation policies
- Reducing the use of fossils will also result in air quality improvements
- If ancillary benefits can be measured in **monetary terms**, they should be **subtracted from the costs** incurred on mitigation policies in order to assess properly the social effects of such policies (Davis et al., 2000), but not if AQ pollutants are already optimally regulated (Kolstad, 2014)
- Account for these complementarities in global and local policies, in policy discussions and climate change negotiations

Review on Ancillary Benefit

				_	
Study	Country	Scenario (tax €/tC)	Side Effect (€ per tCO2)	Key Pollutants	Major Endpoints
Aunan, Aaheim, Seip, 2000	Hungary	Energy Conservation Program	160	TSP, SO2, NOx, CO, VOC, CO2, CH4, N2O, VOC	Health effects; materials damage; vegetation damage
Abt, 1999	US	€35-77	0.5-0.8	Criteria pollutants	Health – mortality and illness; Visibility and material soiling
Barker and Rosendahl, 2000	Western Europe	€ 185	48	SO2, NOx, PM10	Human and animal health and welfare, materials, buildings and other physical capital, vegetation
Boyd, Krutilla, Viscusi, 1995	US	€ 10	13	Pb, PM, SOx, SO4, O3	Health, visibility
Brendemoen & Vennemo, 1994	Norway	€ 967	77	SO2, NOx, CO, VOC, CO2, CH4, N2O, PM	Direct: Traffic noise, road maintenance, congestion, accidents Indirect: Health; recreation; corrosion
Burtraw et al., 1999	US	€12-29-58	0.4-0.6-0.9	SO2, NOx	Health
Holland et al. 2010	EU	2°C stabilisation scenario at the EU	24 (€43 bln a year)	PM2.5,PMcoarse, SO2,	ExternE (morbidity, mortality, crop, building, ecosystems)
Kiulia, Markandya, Ščasný, Tsuchimoto, 2013	Czech Rep	full internalisation of external costs	32 to 72 (€2005)	PM, SO2, NOx	ExternE (morbidity, mortality, crop, building, ecosystems)
Melichar & Ščasný 2014	EU (EU15, EU12)	Full adaptation	17 to 33 (EU) 15 to 27 (Old EU) 20 to 44 (New EU)	PM2.5,PMcoarse, SO2, Nox, NMVOC, heavy metals	ExternE (morbidity, mortality, crop, building, ecosystems)
Nemeth et al. 2010	review	NA	\$44 (dev-ed) \$81 (dev-ing)		Health
Parry, Veung, Heine 2014	20 top emitters	NA	\$50 (coal, 8#) \$100 (diesel, 14#)	PM2.5, SO2, NOx	Health (intake fractions extrapolated from the average plant in China)
Scheraga and Leary, 1993	US	€ 166	13	TSP, PM10, SOx, NOx, CO, VOC, CO2, Pb	Health – morbidity and mortality
Ščasný & Rečka, 2014	Slovakia	€17, -20%, -25%	11	PM2.5,PMcoarse, SO2, NOx	ExternE (morbidity, mortality, crop, building, ecosystems)
West et al. 2013	14 world regions	NA	\$50-380 (\$2005)		Health (AQ model)

ExternE – European methodological framework for damage cost assessment

ExternE "Externalities of Energy" ⇒ developed over 20 years within the EU research projects on monetary valuation of external costs arising from electricity and heat production (www.externe.info)

Impact Pathway Analysis ⇒ bottom up approach and it consists of **four steps**:

- **1. source of pollution**, technological and emission parameters determined
- **2.** calculation of changes in pollutant concentration for all affected regions using an **atmospheric dispersion models**
- **3.** estimation of physical impacts caused by being exposed to a certain pollutant using **dose-response functions**
- **4. economic valuation** of impacts following the WTP approach

Atmospheric dispersion of pollutants and calculation \Rightarrow **EcoSenseWeb 1.3** (local,

regional and North-hemispheric module)

Atmospheric modelling in ExternE, an example

Background concentrations (left) and model dispersion (right) of particulate matters PM_{10} in EcoSenseWeb V1.3 (in $\mu g/m^3$)

Source: output from the model EcoSenseWeb V1.3 (IER 2012)

External costs for non-GHG emissions (€2005 per tone of pollutant)

External costs per non-GHG AQ pollutant

- the country-specific estimates generated in the NEEDS projects (http://www.needs-project.org/)
- the damage factors for "old EU" and "new EU" Member States derived as an averages from country-specific damage values

Covered impacts in the external cost estimates (EU average, €2005 /t)

The external cost estimates covers mainly the following impacts:

- on human health (increased morbidity, reduction in life expectancy)
- on agricultural production
- damage to building materials
- loss of biodiversity
- effect of heavy metals on human health

Modelling framework: Soft-linking of externality assessment and macro modeling

- Soft-linkage procedure based on estimated damage factors per pollutant considered
 - primary energy production as an endogenous output in a macro model (WITCH World Induced Technical Change Hybrid model)
 - emission-fuel factors for each fossil fuel derived from the EMEP/EEA air pollutant emission inventory guidebook EMEP/EEA (2013)
 - **emissions** of air quality pollutants (SO_X , NO_X , PM_{10} , $PM_{2.5}$, NMVOC) and heavy metals (Pb, Cd, Hg, As, Cr, Ni) calculated from fuel use and the EF coefficients
 - damage costs per pollutant ⇒ damage factors per pollutant from the ExternE project NEEDS
- Ancillary benefit measures for each selected Global-IQ scenario computed as avoided external costs from the baseline scenario SSP-2.0
- Assumptions in discount rate

 we suppose that the pure rate of time preference and elasticity of the marginal utility of consumption take value about 1 and the growth rate takes 2%

Two different ancillary benefit measures

 We computed two ancillary benefit measures, reduced total damage cost and reduced damage cost per reduced tone of CO₂

Ancillary benefit measure	Definition	Description
Reduced total damage cost	ΔADC	Annual reduced damage costs (Euro)
Reduced damage cost per	$\triangle ADC/\triangle CO_2$	Reduced annual damage costs per reduced
reduced CO ₂		tone of CO ₂ emissions (Euro/tone reduced
		CO ₂)

Note: All damage costs refer to changes in the emissions from non-GHGs, and do thus not incorporate the economic effects of GHG emissions. Source: Riekkola et al. (2011)

Reduced total (discounted)
$$\Delta DC = \sum_{t=p}^{n} \frac{\sum_{t=p}^{p} \Delta E_{pt} \times EC_{p} \times (1+g_{t} \bullet e_{wtp})^{t}}{(1+sdr_{t})^{t}}$$

DDC is change in total discounted damage costs (in Euro) from the baseline scenario,

 ΔE_p is net change in the emissions of pollutant p (p = 1,...,P) in time t (t = 1,...,n)

EC_p represents external costs per tone of pollutant (Euro per tone of pollutant p)

sdr is a social discount rate expressed as $sdr = \rho + g \cdot \mu$ where ρ is pure rate of time preference (1%), g is growth rate and μ is elasticity of the marginal utility of consumption, e_{wtp} is income elasticity of WTP values. Assuming $\rho=1\%$, g=2%, $\mu=1.0$, implying sdr=3%, and $e_{wtp}=1$.

WITCH Model and GLOBAL-IQ scenarios

- WITCH model ⇒ top-down integrated assessment model (<u>www.witchmodel.org</u>)
 - World Induced Technical Change Hybrid model) developed by FEEM
 - inter-temporal optimal growth model and bottom-up like description of the energy sector (8 technologies coal, oil, gas, biomass, nuclear, hydro, solar, wind)
 - world countries grouped in 12 regions, inlc. **EU OLD** (EU15+EEA) and **EU NEW** (EU12)
 - climate module and a damage function provide the feedback from GHGs to the economy
- **Baseline scenario** (SSP2) ⇒ a middle-of-the-road scenario
 - Shared Socio-economic Pathway central scenario built on the assumption of continuation of all major trends that we observe today
 - projects current trends into the future, without major changes in economic growth, use and availability of resources, technological trends, population growth, economic and envi policies
- Climate change mitigation policy scenarios ⇒ represent the challenges of reaching three long term radiative forcing target corresponding to 3 different representative concentration pathways (RCPs):
 - RCP2.6 radiative forcing is declining to 2.6 W/m² by 2100, correspond to 490 ppm CO₂-eq
 - **RCP4.5** radiative forcing is 4.5 W/m² post 2100 (*650 ppm CO₂-eq*)
 - RCP6.0 radiative forcing is 6 W/m² post 2100 (850 ppm CO_2 -eq)
- Results presented here are for **electricity generation from fossil fuels in Europe** for SSP-2.0 and **climate change mitigation scenarios with full adaptation** as simulated by WITCH model for **2005-2100**.

Economic impacts – mitigation scenarios with full adaptation, based on WITCH model (any details in the GLOBAL-IQ reports)

	2020	2030	2040	2050	2060	2070	2080	2090	2100
Price of CO2, US\$2005									
CM-RCP-6.0	3	4	5	6	7	8	10	12	14
CM-RCP-4.5	16	24	35	53	77	113	164	236	335
CM-RCP-2.6	153	232	347	519	780	1170	1738	2534	3513
GDP EU, (wrt RCP-6.0)									
CM-RCP-4.5	-0.05%	-0.10%	-0.14%	-0.22%	-0.41%	-0.62%	-0.49%	-0.62%	-0.89%
CM-RCP-2.6	-1.26%	-1.92%	-2.63%	-3.19%	-3.72%	-4.24%	-4.88%	-5.88%	-7.13%

Total volume of emissions based on WITCH simulations, Europe, SSP-2.0 and RCPs scenarios, (2005-2100)

	NOx	SOx	PM2.5	CO2	Δ ΝΟχ	ΔSOx	Δ PM2.5	Δ CO2
	Mt	Mt	kt	Mt	Mt	Mt	kt	Mt
Reference scenario								
SSP2	270	836	5 535	132 147				
Climate mitigation scenario								
RCP-2.6	95	257	4 645	12 537	-175	-579	-890	-119 611
RCP-4.5	181	545	5 055	58 170	-89	-291	-480	-73 978
RCP-6.0	236	738	5 386	115 512	-34	-98	-149	-16 635

The last column gives the amount of avoided CO2 emissions if RCP-scenario was implemented.

Cumulative damage costs, bln. Euro, fuel type

(WITCH simulations for Europe for 2005-2100, SSP-2.0 and Global-IQ RCP)

bln. €	Coal	Gas	Oil	Biomass	Total	% change
Reference scenario						
SSP2-EU	4 141	213	193	104	4 650	
Climate mitigation scenario						
RCP-2.6-EU	1 088	110	128	411	1 736	-63%
RCP-4.5-EU	2 682	155	243	163	3 243	-30%
RCP-6.0-EU	3 576	178	242	104	4 100	-12%

Note: all values are presented for the year of 2005.

annual ancillary benefits (M€/yr) annual CO₂ reductions (Mt CO₂/yr)

cumulative ancillary benefits (M€/yr) benefits per CO₂ abated (€/tCO₂)

RCP-2.6

(490ppm)

RCP-4.5

(650ppm)

Ancillary benefits, Euro per t CO₂ avoided

(WITCH simulations for Europe for 2005-2100, SSP-2.0 and RCP GIQ scenarios)

	RCP-2.6	RCP-4.5	RCP-6.0
EU Old	21.3	15.3	27.3
EU New	34.8	19.6	44.1
EU	24.4	16.6	33.1

for EU	RCP-2.6	RCP-4.5	RCP-6.0
2011-2030	35	17	41
2031-2050	27	30	37
2050-2100	21	13	27

Conclusions

- There is a compelling evidence that ancillary health and environmental benefits from improved air quality are substantial
- A broader extent of the impacts can be included by using a bottom-up impact pathway approach, as developed within the ExternE project series ⇒ besides health benefits, also other environmental effects (crops, ecosystems, materials and toxic pollutants) are quantified
- Significant ancillary benefits accompany climate change mitigating policies there are at least 20€ per t CO₂ abated. Their magnitude depends on
 current fuel- and technology mix, receptor (population) density, and
 stringency of mitigation policy
- The estimates of ancillary benefits likely underestimate the benefits due to yet not quantified benefits ⇒ only a subset of the health and environmental consequences from air pollution have been quantified or monetized so far

Thank for your attention and comments

Jan Melichar, Milan Ščasný

Charles University Prague, Environment Center

jan.melichar@czp.cuni.cz; milan.scasny@czp.cuni.cz

